
1

RISC Relay CPU. Architecture and Instruction List

R.J.H. 20190106

This is a Harvard architecture with separate memories for instructions and data.
Registers, instructions and both memories are 16 bits wide. Both memory sizes are 64K
words. Most instructions need only one cycle (defined as memory read followed by ALU
operation), but the 32 bit instructions, and executed jump instructions need 2 cycles.
It is intended that the design will be implemented without using microcode.

GENERAL INSTRUCTION INFORMATION

REGISTERS

- There are eight user-visible registers, one of them is the PC.
- All registers are 16 bit. In the implementation, the PC is only 12 bit.
- Three of these registers (CL, XL, YL) can be used as an address register.
- Six registers can be paired to form three 32-bit registers D, X and Y
- There is a 16-bit instruction register IR and a single condition bit called T.

The picture shows the registers, their names and their 3-bit code.

2

INSTRUCTION FORMATS

This is a 2-operand design. The first operand is a register (RRR) and the second operand is:

• A register (SSS) in the register format, or
• An Immediate operand (Immediate format), or
• The contents of a memory location (in Memory and Zero page formats).

The result of the operation is put in the RRR register.

A: 2-bit address register select
B: 6-bit specification of Test-and-Branch instructions
D: 5-bit displacement. The displacement is OR-ed with the address register contents.
L: 32-bit operation flag
M: 3-bit operation code (opcode)
Q: 3-bit extra operation code
R: 3-bit destination register
S: 3-bit source register or 2-bit source register pair
X: unused
Z: 5-bit zero-page memory address.

The register instruction format has three additional operation code bits (Q), that can be used
to define a shift for the operand.

Allmost all instructions have two operands, like this:

 <instruction> <dst>,<src> ; comment

ADD DL,[CL+2] ; Add contents of location (CL+2) to the destination register DL.

ST [CL+4],DL ; Store the DL register at location (CL+4).

3

INSTRUCTIONS

The possible instructions depend on the instruction format:

 instruction format
Opcode Zero page Zero page

logic
Memory

Register Immediate
(except PC)

Immediate
PC

000 TEQ 7segment TEQ TEQ TEQ
001 LD XOR LD LD OR/PREFIX JP
010 ST ST TSTB TSTB
011 ADD OR ADD ADD ADD BR
100 - - SUB / TGT XOR BRF
101 DADD DADD DADD DADD JPF
110 - AND - DSUB / DTGT AND BRT
111 DMPY DMPY LD JPT

 TEQ test if register equal to operand. Only affects flag T.
 LD load register with operand
 ST store register in memory
 TSTB testbit, test if (register AND operand) is zero. Only affects flag T.
 TGT test greater than (subtract without storing result)
 ADD add operand to register (binary)

DADD add operand to register (decimal)
DSUB subtract operand from register (decimal)
DTGT decimal test greater than (subtract without storing result)
DMPY multiply-step (conditional add, to be defined later)

AND register <- register AND operand
OR register <- register OR operand
XOR register <- register XOR operand

The TBRZ/TBRNZ instructions have a different encoding and are not in this table.

In the second half of this document, all instructions will be presented individually.

CONDITION FLAG

After an add or subtract instruction, the T flag indicates the state of the carry. After other
instructions (including LD, the compare instruction TEQ and bit-test instruction TSTB), the T
flag indicates if the ALU result was zero. (The TEQ instruction is an XOR, where the result is
not written to the register.)
Branches or calls can be conditional (ending with T or F), these instructions test the T flag.

4

ADDRESS REGISTERS

The memory format specifies an address register. The registers CL, XL and YL can be used
as address register. The register is specified by the two A bits in the instruction.

00 CL
01 unused
10 XL
11 YL

Memory addressing always has a small (5 bit) displacement within the instruction opcode.
This facilitates addressing of variables in a stack frame, or addressing of structure members.
This displacement is not really added, but or'ed to the address register contents. This saves
an adder. The programmer or compiler must be aware that the address register contents
must be properly aligned.

IMMEDIATE PREFIX

The immediate instructions have only a 8 bit data field. Normally, bits 8-15 of the data will get
the same value as bit 7 (sign-extension).
If a full 16-bit immediate is needed, then use the prefix instruction to put 8 bits in DH
(automatically generated by the assembler). The prefix instruction will set a flag (not
accessible by the user), that indicates to the following (immediate) instruction that data bits 8-
15 must be copied from DH bit 0-7.
This is also used for 16-bit jump and call instructions.

If you want to load DH with an immediate value, without the intention to use it as the higher 8
bits in the next instruction, then use a regular "LD immediate" instead of PREFIX.

32-BIT INSTRUCTIONS

An instruction handles 32 bits if the L bit is 1. Bit 0 and bit 8 must be 0. For immediate
instructions, the 32 bit mode is not available.

The 32 bit instruction needs two cycles:

1) The 32 bit instruction will first handle the lower 16 bits just like a regular 16 bit instruction,
with XL, YL or DL registers (and an even memory address). It will also set an internal flag. It
wil not increment the program counter, so the next executed instruction will be the same one,
although the internal flag will set bit 0 and bit 8 in the instruction register.

2) So now, it will handle the higher 16 bits, with XH, YH or DH registers (and the next
memory address). If it is an add or sub instruction, the carry will be used, so that this
becomes a real 32-bit add or sub. The internal flag will be cleared and the PC will be
incremented again so the execution will continue with the next instruction.

5

OPERAND SHIFTING

The register instruction format has some bits Q that can be used to define a shift for the
operand, or for ignoring the ALU result (for TGT / DTGT).

Q Q Q
D3 D2 D1
0 0 0 SHL4 shift left by 4 bit positions
0 0 1 SHR4 shift right by 4 bit positions
0 1 0 SHR8 shift right by 8 bit positions
0 1 1 SHR12 shift right by 12 bit positions
1 0 0 Normal (not shifted)
1 0 1
1 1 0 Not store result (used for TGT / DTGT)
1 1 1

Note that the shift operates on the 32 bits of a register pair.

The shift can be useful in combination with the instructions LD, ADD, SUB, DADD, DSUB
and their 32-bit versions. When used with the 32-bit mode, it can shift a 32-bit value and add
or subtract that to/from another 32 bit value, all with a single instruction.

PROGRAM COUNTER

While the instruction executes, the PC will be incremented and the next instruction will be
fetched at the same time. This is possible because the program memory is separated from
the data memory. This makes it possible to execute every instruction in a single cycle.

This would also mean, that the instruction that follows a jump will always be executed (also if
the jump is taken), because this instruction was already fetched (pipeline effect). To prevent
this, this instruction (that is fetched immediately after a jump is taken) will be automatically
changed to a NOP, so it will not have an effect. Due to this mechanism, a jump that is taken
will take two cycles.

There is also a mechanism to save the return address in case of a CALL instruction. A CALL
is identical to a LD PC instruction. Every LD to the PC will place a return address in register
DH (if it is a normal jump that should not save the PC, use the relative jump. The relative
jump will not write to DH).

Examples of PC instructions:

- Relative forward jumps. This is done by simply adding a small immediate value to PC. The
relative jump will take only a single 16 bit instruction.
 BR 40 // jump 40 instructions forward

- Fast absolute jumps or calls: A call to a location (up to $7F) can be done with:
 TRAP 0x34 // jump or call to 0x0034

6

SUBROUTINE STACK FRAME

The CPU does not have a stack pointer in the classic sense (you could use an address
register and increment or decrement it before or after every use, but this is not very efficient).
It is the intention that one of the registers, let's say CL, is used as a frame pointer, that points
to a section of memory that contains the local variables of the current executing subroutine
(P). This section can also be used to store temporary results.

When a subroutine (Q) is called, the frame pointer CL should get a new value, to point to a
free section of memory. When Q returns control to P, CL must again get its original value.
The simplest way to do this, is to increment or decrement CL by a fixed value of 32 (see next
example). Of course you can also use a frame size of 16 or 8. With some effort, you could
also design a mixed-size frame system.

 CALL PC,$1F28 // call address $1F28 (the assembler will also generate
 // an 8-bit immediate prefix instruction)

$1F28: ST [CL+31], DH // store the return address at top of the caller's frame
 ADD CL,#32 // select next frame
 // 31 locations (CL+0) up to (CL+30) are now available
 // to this subroutine for local storage.
 ADD CL,# -32 // subtract 32 to go back to previous frame
 JP [CL+31] // load PC with return address (will also write PC to DH, but
 // this DH value will not be used)

If a subroutine is a leaf (does not call other subroutines), it could use zero-page locations for
its variables and it is not needed to save DH.

7

SIMPLIFIED CPU DIAGRAM

The register bank has one write port (at the left side) and two read ports (at the right side).
The output of the ALU can only go to the PC or to one of the registers. A register can be
stored in memory through the "Store" buffer.

ALU input A can be loaded from register port 1 or from the PC. ALU input B can be loaded
from memory, from an immediate value, or from memory port 2 (through a shift unit, the shift
amount can also be zero).

Note that this is a simplified diagram that does not show all details.

DECIMAL ADDITION

The following system is used to enable addition for binary coded decimals (BCD code):

The 4 nibbles that enter the ALU at port A will each be incremented by 6 by a special circuit.

The ALU has now on port A a number 0x06 - 0x0F, and on port B 0x00 - 0x09. These are
added in the normal binary way. The adder will generate a carry at each nibble if the result in
this nibble is higher than 0x0F, and this means the sum is greater than 9 decimal (because 6
was added). The carry of each nibble will be added to the next higher nibble in the same way
as for binary addition.

So, for a result below 10, the ALU nibble output is 0x06 - 0x0F (6 too high) without carry,
and for results of 10 or higher, the nibble output is 0x00 - 0x09 (that's ok) with the carry set.

8

When the nibble has no carry, the result must be corrected again, this time from 0x06 - 0x0F
to 0x00 - 0x09. At the output of the ALU, there is a special circuit for each nibble that
subtracts 6 from this nibble when there was no carry for that nibble.

DECIMAL SUBTRACTION

How subtraction works is not shown in the diagram. For subtraction it is needed to
complement one of the ALU inputs. This does not have to be implemented in the ALU, but
can be implemented in the register bank. The register bank can deliver complemented output
on port 2. Setting the ALU function to ADD, and setting the ALU Carry-input to 1, will give the
subtraction result of the two selected registers at the output of the ALU (for binary).

Now for decimal coded numbers.

The bitwise complement of a BCD number has a range from 0x06 - 0x0F, this means that the
increment-6 circuit for ALU input A (described in decimal addition), must be switched off. The
carry dependent subtract-6 is still needed.

7 SEGMENT DECODER

The design can be used for a calculator. The segments of the displays will be directly
connected to CPU registers, to save hardware. This is possible because when the answer is
shown at the display, the CPU will have finished its calculation, so the registers are not
needed for something else at that moment. A specific I/O bit could be used to switch the
displays off during calculation (not implemented).

Of each display, 4 segments are connected to the X register, and the other 3 segments are
connected to the Y register. Note that each display is connected to the corresponding nibble.

The CPU has a special instruction that decodes all BCD nibbles from a source location to the
corresponding segments in the X register, and another instruction that decodes the same
BCD nibbles to the corresponding segments in the Y register.

When using 32-bit instructions, only two CPU instructions are needed to show all 8 BCD
digits of a 32-bit number on the displays.

Another register is connected to the decimal points of the displays.

9

MOVE INSTRUCTIONS

LD Load

LD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 10 0 001 0 R L 0 Z
Immediate 78 0 111 1 R Immediate data
Memory 90 1 001 0 R L A D
Register 98 1 001 1 R 0 S S L Q Q Q S

The LDL instruction is a 32-bit version for move, the assembler will set the L bit in the
opcode.

ST Store

ST 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 20 0 010 0 R L 0 Z
Memory A0 1 010 0 R L A D

The STL instruction is a 32-bit version for ST, the assembler will set the L bit in the opcode.

LDC Load constant

Load constant from program space. The register defined by A points to a location in the
program code. The 16 bit data at that position is moved to the DH register. This instruction
takes 2 cycles.

LDC 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 09 0 000 1 001 0 A xxxxx

PREFIX

PREFIX 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 1B 0 001 1 DH Immediate data

The prefix instruction will be generated automatically by the assembler when a 16-bit
constant is used. It loads the DH register with 8 bit immediate data.

CLR

CLR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 78 0 111 1 R 00000000

Puts value 0 in register R.

10

ARITHMETIC INSTRUCTIONS

ADD

Adds the source operand to register R.

ADD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 30 0 011 0 R L 0 Z
Immediate 38 0 011 1 R Immediate data
Memory B0 1 011 0 R L A D
Register B8 1 011 1 R 0 S S L Q Q Q S

SUB

Subtracts register S from register R.

SUB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register C8 1 100 1 R 0 S S L Q Q Q S

TGT

Test Greater-Than. Subtract without storing result. Used to compare two numbers.

TGT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register C8 1 100 1 R 0 S S L 1 1 0 S

SUB immediate

The assembler will make the immediate operand negative and build an immediate ADD
instruction.

SUB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 38 0 011 1 R Neg (Immediate data)

INC

INC 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 38 0 011 1 R 00000001

DEC

DEC 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 38 0 011 1 R 11111111

11

DADD

Decimal ADD, uses binary coded decimal number format (4 digits in a 16 bit word).

DADD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 54 0 101 0 R L 0 Z
Immediate 5C 0 101 1 R Immediate data
Memory D0 1 101 0 R L A D
Register D8 1 101 1 R 0 S S L Q Q Q S

DSUB

Decimal SUB, uses binary coded decimal number format

DSUB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register E8 1 110 1 R 0 S S L Q Q Q S

DTGT

Decimal Test Greater-Than

Decimal subtract without storing result. Used to compare two numbers.

DTGT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register E8 1 110 1 R 0 S S L 1 1 0 S

The ADDL, DADDL, SUBL, DSUBL, TGTL and DTGTL instructions are 32-bit versions of the
arithmetic instructions, the assembler will set the L bit in the opcode.

12

DMPY

DMPY will do a conditional decimal ADD. It is intended to be used as a part of a
multiplication. Mostly used in 32-bit version (DMPYL).

DMPY 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 70 0 111 0 1 R L 0 Z
Memory F0 1 111 0 R L A D

In the instruction, bit 2 and 3 determine which bits will determine what happens (note that
these bits 2 and 3 are also part of the operand address):

If instruction.bit2=0 and instruction.bit3=0 :

• The result of the decimal ADD will be written to the register if bit 0 of DL is 1.
• The next instruction will only be executed if bit 1 of DL is 1.

 If instruction.bit2=1 and instruction.bit3=1 :

• The result of the decimal ADD will be written to the register if bit 2 of DL is 1.
• The next instruction will only be executed if bit 3 of DL is 1.

13

DMPY USE

The DMPYL instruction is used for multiplying an 8-digit decimal number with a single
decimal digit (using a sequence of only 4 instructions).

The decimal number is stored in memory, in four different versions (at four locations):

1. Location Z1, the decimal number itself.
2. Location Z2, the decimal number multiplied by 2.
3. Location Z4, the decimal number multiplied by 4.
4. Location Z8, the decimal number multiplied by 8.

The decimal digit is the right-most digit in the DL register. The result is added to the 8-digit X
register. The algorithm is as follows:

• If bit 0 of DL is 1, add Z1 to X (32 bit decimal add)
• If bit 1 of DL is 1, add Z2 to X
• If bit 2 of DL is 1, add Z4 to X
• If bit 3 of DL is 1, add Z8 to X

This is the instruction sequence for the algorithm:

DMPYL X,[Z1] ; If bit 0 of DL is 1, add Z1 to X. If bit 1 of DL is 0, skip next instruction

DADDL X,[Z2] ; add Z2 to X. (This instruction will be skipped if bit 1 of DL is 0)

DMPYL X,[Z4] ; If bit 2 of DL is 1, add Z4 to X. If bit 3 of DL is 0, skip next instruction

DADDL X,[Z8] ; add Z8 to X. (This instruction will be skipped if bit 3 of DL is 0)

Note that Z1 and Z4 must be at certain memory positions in order to have the correct values
for bit 2 and bit 3 of the instruction.

In worst case, 2 cycles per instruction are executed (8 cycles total). In the best case, the 2nd
and 4th instruction are skipped, so only 2 instructions are executed (4 cycles total).

As an optimization, a DMPYL instruction that does not write the register, could skip the
second half of the 32-bit instruction. Now, in best case, only a total of 2 cycles are needed
(this happens when the multiplying digit is zero). This is not implemented.

14

LOGIC INSTRUCTIONS

AND

AND 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 68 0 110 1 R Immediate data
Zero page 60 0 110 0 R L 1 Z

OR

OR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 18 0 001 1 R Immediate data
Zero page 30 0 011 0 R L 1 Z

The OR with immediate operand is not available for the DH register. That opcode is used for
PREFIX.

XOR

XOR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 48 0 100 1 R Immediate data
Zero page 10 0 001 0 R L 1 Z

TEQ Test equality

TEQ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 00 0 000 0 R L 0 Z
Immediate 08 0 000 1 R Immediate data
Memory 80 1 000 0 R L A D
Register 88 1 000 1 R 0 S S L Q Q Q S

TSTB

Testbits. Set flag T according to the result of an AND between the register and the operand.
The result of the AND is not stored.

TSTB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 28 0 010 1 R Immediate data
Register A8 1 010 1 R 0 S S L Q Q Q S

15

SEGA

SEGA 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 00 0 000 0 R L 1 0 Z

This will convert each nibble from the source location to segments F,C, D and B (for driving a
7-segment display) in the destination register. The destination register may be the same as
the source register.

The result has inverted logic (a 0 means the segment is ON). Input nibbles above 9 are
displayed as 2 to 7.

SEGB

SEGB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 00 0 000 0 R L 1 1 Z

SEGB works just as SEGA, but for segments G, C, A, E. Note that segment C is produced by
both instructions.

Digit Input SEGA result SEGB result
 F C D B G C A E
 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 1 0 1 0 1 0 1 1
2 0 0 1 0 1 1 0 0 0 1 0 0
3 0 0 1 1 1 0 0 0 0 0 0 1
4 0 1 0 0 0 0 1 0 0 0 1 1
5 0 1 0 1 0 0 0 1 0 0 0 1
6 0 1 1 0 0 0 0 1 0 0 0 0
7 0 1 1 1 1 0 1 0 1 0 0 1
8 1 0 0 0 0 0 0 0 0 0 0 0
9 1 0 0 1 0 0 0 0 0 0 0 1

16

DISPLAY SIGNALS

Display
 1-12

12 11 10 9 8 7 6 5 4 3 2 1

 sign mantissa Exp
sign

exponent

GCAE C XH XL C C
FCDB DL YH YL DL
bits 15-12 15-12 11-8 7-4 3-0 15-12 11-8 7-4 3-0 11 7-4 3-0

Decimal
point
(DH bit nr)

15 14 13 12 11 10 9 8

The sign of the mantissa has all segments connected. The sign of the exponent has only the
segment G connected.

The picture shows the connection of the mantissa.

The upper 8 bits of the DH register control the decimal points of the mantissa digits (not in
the picture).

17

PROGRAM FLOW INSTRUCTIONS

Jumps or calls to a label (immediate instruction format) can have two sizes:

• Short distance. The jump address or displacement (-128 .. +127) is in the immediate
field of the 16 bit instruction.

• Long distance. The assembler generates a prefix instruction for the upper 8 bits of the
immediate operand, the lower 8 bits are in the immediate field of the instruction itself.
This can not be used for conditional instructions because the prefix instruction will
alter the T flag.

Two different methods can be used to determine the jump address:

• Relative jumps. The (signed) displacement is added to the PC. These instructions do
not generate a return address.

• Absolute jumps. These place the return address in the DH register.

Note that, when a branch or jump is taken, the instruction that follows the branch or jump is
converted to a NOP.

BR Branch (Jump relative)

BR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 31 0 011 0 001 L 0 Z
Immediate 39 0 011 1 001 Immediate data
Memory B1 1 011 0 001 L A D
Register B9 1 011 1 001 0 S S L Q Q Q S

BRT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 69 0 110 1 001 Immediate data

BRF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 49 0 100 1 001 Immediate data

Short distance jump to label: Use the BR assembly instruction. The assembler generates
an Add-immediate-to-PC and will require a short jump distance. (The relative jump will not
leave a return address).

Long distance jump to label: Use the JP assembly instruction. The assembler will generate
a long-distance relative jump (The relative jump will not leave a return address).

The BRT instruction only does the branch if the T flag is 1. The BRF instruction only does the
branch if the T flag is 0.

Alias instructions: BRC, BRNC, BRZ, BRNZ can also be used (but all test the same flag T)

18

CALL / TRAP

CALL 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 11 0 001 0 001 L 0 Z
Immediate 19 0 001 1 001 Immediate data
Memory 91 1 001 0 001 L A D
Register 99 1 001 1 001 0 S S L Q Q Q S

CALLT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 79 0 111 1 001 Immediate data

CALLF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Immediate 59 0 101 1 001 Immediate data

Long distance call: Use the CALL assembly instruction. The assembler will generate a
long-distance absolute jump (this jump will leave a return address in the DH register).

Call to zero-page or top-page: Use the TRAP assembly instruction. Can only be used if the
destination address is 0..0x7F or 0xFF80..0xFFFF. The assembler will generate a absolute
jump (this jump will leave a return address in the DH register). The subroutine address is part
of the 16-bit instruction as a signed 8 bit value, so it is a fast and short way to call a
subroutine.

The processor will, when the PC gets a new value, first increment the PC before it fetches
the new instruction. This has as effect that the instruction after a call instruction is skipped,
and this was not intended. As a workaround, it is recommended that every call is followed by
a NOP. Also, when doing a computed jump (JP instruction), the first instruction will be
skipped. This can be prevented by loading the PC with the instruction address minus one.

For jumps and branches to labels, the assembler will do the correction.

JP

JP 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Zero page 11 0 001 0 001 L 0 Z
Memory 91 1 001 0 001 L A D
Register 99 1 001 1 001 0 S S L Q Q Q S

The JP instruction can be used to load the PC with the contents of a register or the contents
of a memory location as a source. There is no distinction between short or long distance. The
address of the next instruction will be placed in the DH register. (If you use JP with a label
(immediate mode), a relative jump will be generated as explained in the BR section).

19

TBRZ / TBRNZ

This instruction will test a specified bit in a register pair, and branch if the bit was zero or non-
zero.

Bit to test 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 000 1 P 0 0 1 S S Branch distance
1 1 000 1 P 1 0 1 S S Branch distance
2 1 001 1 P 0 0 1 S S Branch distance
3 1 001 1 P 1 0 1 S S Branch distance
4 1 010 1 P 0 0 1 S S Branch distance
7 1 010 1 P 1 0 1 S S Branch distance
15 1 011 1 P 0 0 1 S S Branch distance
31 1 011 1 P 1 0 1 S S Branch distance

P = 0 TBRZ Test Bit and Branch on Zero

P = 1 TBRNZ Test Bit and Branch on Non Zero

The branch is always forward, the distance is from 0 to 31.

SS selects one of the register pairs D, X, Y or the register CL.

If bit 8 in the instruction is 1, the instruction will operate on the CL register instead of the PC
register (so it will conditionally add the 0-31 constant to the CL register).

The T flag is not involved in this instruction.

NOP

No operation (coded as TEQ CL,[0] so it might change the T flag)

NOP 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 00 0 000 0 000 0 0000000

HLT

Halt. Will stop the CPU and wait for a key press. If a user key is pressed, the CPU will
continue with the inverted key code in the DH register.

HLT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 81 1 000 0 001 x xxxxxxx

--- end ---

